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ABSTRACT

We rive made propagation measurements at low altitudes
over hilly, forested terrain with the objective of developing
a computer-based propagation model capable of predicting
path loss given the terrain profile between transmitter and
receiver. The measurements were made at a frequency of 110.6
MHz with the VOR station at Gardner, Massachusetts, as a

transmitter. The received signal was measured at distances

-
b el il o ol

between 7 and 15 km by making vertical descents with a helicopter

from altitudes ot roughly 800 m down to 10 m above ground.

i m bl

We found good agreement between the measurements and model

predictions based on an extension of the Deygout approximation.

Use of two knife-edges was sufficient to characterize the
terrain diffraction. Neuligible multipath reflection was

observed from this terrain.
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1, Introduction

We have made VHF propagation measurements at low altitudes
over hilly, forested terrain with the objective of developing
a computer-based propagation model capable of predicting
path loss given the terrain profile between the transmitter
and receiver. As a transmitter for these measuremants we
used an aircraft-navigation aid, a VOR (for VHF Omnidirectional
Range) station* located near Gardner, Massachusetts. We
used a helicopter to probe the signal strength as a function
of height at six locations between 6.6 and 15.3 km from the
transmitter. Since our objective was to develop a propagation
model, we selected paths for measurement that presented modeling
difficulties because of multiple diffraction or the lack
of clearance of the first Fresnel zone,

We tested various modeling assumptions against the measured
data to determine the appropriate algorithm for automatically
selecting edges on the terrain profiles. By measuring the
path intersections with contours on large-scale maps, we
obtained accurate terrain profiles; we also used profile
data derived from digital terrain-relief maps provided by
the Defense Mapping Agency (DMA). Appendix A compares the

profiles obtained by these two methods ard presents propagation

*The nationwide network of VOR stations operating in the
frequency range 108 to 118 MHz provides well sited, ground-
based transmitters that can be used for propagation measurements.
A wide variety of terrain types could be investigated by
selecting appropriate VOR sites.
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predictions for the DMA profiles. We also compared the predictions

of our propagation model with those of the Longley-Rice model
(Longley & Rice, 1968), and the results of these computations

are shown in Appaendix B.

2. The Propagation Paths

The VOR station at Gardner, Massachusetts (about 80 km
west of Boston), is shown in Fig. 1. This facility is located
in hilly, forested terrain on a hilltop cleared of trees.
The VHF antenna shown in this figure consists of a conducting
ground-plane 150 ft in diameter mounted 15 ft above the ground.
A ring of loop antennas 44 ft in diameter is installed one-
half wavelength above the ground plane. The pattern of this
antenna system is symmetrical in azimuth. The station is
a so-called Doppler VOR, described by Anderson and Flint
(1959).

We selected propagation paths along azimuth bearings

155, 163, 170, 175, and 190 deg from the transmitter. These

paths are shown plotted on a contour map in Fig. 2. Propagation

was measured over six paths extending from the VOR to points
lakeled in this figure. Nearly all of the terrain along
these paths is forested with mixed evergreen und deciduous
trees; Fig. 2 shows the areas of forest. We used the 7.5-

minute quadrangle maps (scale 1:24,000, contour interval 3.05 m)
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that are reproduced in Fig. 2 to determine the profiles of the
terrain beneath these propagation paths. Straight lines were
drawn to represent the paths on the maps; distances to
intersections with every contour line were measured and recorded
along with the contour elevation. The profile points thus
determined were read into a computer and interpolated linearly
to derive a profile represented by points equally spaced

10 m apart along each path. Figure 3 shows the terrain profiles.
Note that sevecal maxima show up on each profile. 1In Fig.

3 we find a ridge in the Natty Pond-West Ware River profile

at a Jdistance of 4 km that will mask the line-of-sight when

the helicopter is at low altitudes over the measurement points.
In the other profiles at distances from 2.4 to 5.2 km there

are also predominant ridges that mask the line-of-site at

low altitudes.

We selected these profiles for propagation measurements
because they present several difficulties for propagation
modeling: (1) several ridges or hills appear in each profile,
so that multiple~knife-edge diffraction may nccur when the
receiver is at low altitudes, (2) significant portions of
terrain profiles lie within the first Fresnel zone when the
receiver is near but above the predominant mask, and
(3) when the receiver is below the predominant mask, large
portions of the terrain bLeztween transmitter and mask also

lie within the first Fresnel zone. In other words, when
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the receiver is at low altitudes the first Fresnel zone is

cbstructed not only by ridges and hills but by large segments

of the profiles themselves.

The siz2 of the first Fresnel zone surrounding the geometrical

ray paths may be computed from the following expression for

H the semiminor axis of the ellipse that forms the outer

O'
boundary of the first Fresnel zone: H, = (1/2)/ AR, where

Ais the wavelength, and R is the distance between transmitter

and receiver when there is no masking., If the line-of-sight
is interruped by a mask, R is the distance between mask and
transmitter (or receiver).

Althouah we expected little multipath from the forest-
covered terrain, we selected two paths, Natty Pond and East
Ware River, to test for multipath because these paths have
relatively flat terrain in front of the transmitter. If
coherent reflection occurred in these areas, it would show
up in the vertical-probe measurements over these paths, but
no evidence of multipath appears in these data (see Sec. 5).
Figure 4 shows an aerial photograph of the terrain along the
Natty Pond/West Ware River paths out to a distance of about

5 km from the VOR. This photograph, made at the time of the

measurements, shows the evergreen and bare deciduous trees in the

forest.

On the basis of earlier measurements cf diffraction over

trees (LaGrone, 1977 and Meeke, 198l), we assumed that diffraction

8
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occurred at treetop heights, so it was necessary to take into
account the tree cover on the predominant masks. This was done
by making theodolite measurements from the VOR site along each
path to determine the elevation angles of the mask. Tree
heights were then determined by subtracting the elevation
angles of the bare hilltops computed from the relief-map

data. An average tree height of 50 ft (15.2 m) was determined
in this way, ard this height was added to the profiles to
represent the tree cover in forested parts of the terrain.
Before model predictions were computed, the profiles in Fig.

3 were adjusted to include the average tree height. In Appendix
A we show additional model predictions for these paths computed
with terrain profiles derived from digital terrain-relief

data supplied by DMA,

3. Experimental Method

The signal power propagated along each path was measured
with a helicopter (Bell 206B) during vertical descents over
each path endpoint. 1In this way the propagated signal was
probed as a function of helicopter altitude. Tvxo descents
were made over each point. The frequency radiated by the
Gardner VOR was 110.6 MHz, the polarization was horizontal,
and the transmitting antenna was designed to have isotropic
gain in the horizontal plane. Although the gain of the trans-

mitting antenna varies with elevation angle, we have neglected

10
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this effect. All measurements were made at elevation angles 1
between 0 and 5 deg; model measurements of VOR antenna patterns
by Sengupta (1971) show that the gain increases by 2 dB when the

elevation angle changes from 0 to 5 deg. The receciving antenna

on the helicopter was a horizontal dipole mounted below a reflecting

plate 80 cm in diameter. When airborne the dipole could be

‘lowered 38 cm below the helicopter landing skids and 57 cm

R e ® ol

the operator reached through the helicopter window and turned

|
1
} below the reflecting plate. At the beginning of each descent
i
|
: the dipole in a horizontal plane to peak the received signal.
1

1:
1
i
;

Figure 5 shows the antenna on the helicopter with the dipole
v lowered.
| In initial trials the peak received signal was found to
be a function of the helicopter heading relative to the line-
t of-sight. To remove this effect all helicopter descents
were made with the helicopter pointed toward the VOR.

The received power was measured with a Singermetrics
37/57 EMI field intensity meter and recorded on a decibel
scale with a Hewlatt Packard 7155B chart recorder. Figure 6

shows this equipment mounted on the rear seat of the helicopter.
* The altitude indicated by the helicopter's barometric
altimeter was recorded as a function of time on a cassette
audio recorder, and the recording was synchronized with the

chart record. In this way we obtained a record of signal

strength as a function of receiver height over each path.

11
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Fig. 6. The Helicopter Instrumentation. The equipment
mounted in a rear seat consists of a signal-strength
meter, a spectrum analyzer, and a chart recorder.

13

.
- - - . < ~=e i, B

g P

T VIRCY o)




The descent rates were roughly 3 to 6 m/sec. Taking into
account timing errors and altimeter errors, we estimate that
the resulting height errors in measuring the signal strength
are less than about 5 m.

4. Propagation Modeling

To develop a computer model for predicting VHF propagatioi:
over these terrain profiles, we began by considering the
modeling as a multiple-diffraction problem, taking the significant
diffracting features on the terrain profiles as knife-edges.
Several questions then had to be considered: (1) how many
knife-edges must be taken into account? (2) how does the
computer select these knife-edges? and (3) how is the propagation
affected by the fact that much of each terrain profile falls
within the first Fresnel zone at the low receiver altitudes?
Where the answers to these questions could not be deduced
from electromagnetic theory, we tested various assumptions
against our measured data to arrive at the computer model
described here.

The diffraction produced by a single knife-edge is determined
by the position of the diffracting mask in the Fresnel-zone
pattern of the propagated wave. The strength of the propagated
signal depends on the clearance of the line-of-slight over the
knife-edge. As the helicopter descended and the line-of-sight

approached the mask from above, diffraction effects began to

14
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beccome significant when the knife-edge entered the first Fresnel

zone. (A detailed discussion of knife-edge diffraction has been

given by Meeks, 1981.) Although the problem of diffraction

over two successive knife-edges has been solved in terms of Fresnel

theory (Millington, et al., 1962), no general solution is

available for three or more successive knife-edges. We used an

approximate method developed by Deygout (1966) for determining

the propagation loss over multiple knife-edges. Figure 7a shows

an example of the standard Deygout construction: the loss
due to the principal mask Ml is calculated from the clearance
h,, and the loss due to M, from the ciearance hz. constructed
as shown. The losses in decibels are added to obtain the
total loss. The rationale for this approximation is that
knife-edge Ml may be coneidered as the origin of a scattered
wave that propagates into the shadow region (see Rice, 1954)
and is diffracted by M2, suffering additional loss. This
construction can of course be generalized for three or more
knife-edges. But we must remember that the scattered edge-
wave described by Rice (1954) is only defined at sufficiently
large distance from the diffracting knife-edge. Hence this
approximation must break down when the separation between
knife-edges becomes too small. We can also expect errors
when the line-of-sight clears two successive knife-edges,

as shown in Fig. 7b. The Deygout approximation takes into

15
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Fig. 7. Ray Constructions for the Extended Deygout Approximation.
(a) Shows the standard Deygout construction. (b) Shows the
extension by which additional knife- edges are taken into

account when there is no masking.
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account only one of the cleared knife-¢dges. We have generalized
this approximation as shown in Fig. 7(b). When the line-
of-sight clears two masks, the principal-mask contribution

is determined as usual from h,, but the construction shown

in Fig. 7(b) is used to determine h, so that the effect of

the second mask can be taken into account. This change in

the construction method insures that the calculated loss

will be continuous through the transition between the geometry
of Fig. 7(a) and Fig. 7(b).

The computer program that automatically locates the
knife-edges on a terrain profile operates as follows. The
profile is tested to locate the point of minimum clearance
or highest mask between transmitter and receiver, and thc
location of this point is recorded. 1If the line-of-sight
is unmasked, then the profile is searched for the second
highest knife-edge, excluding from the search segments of
the profile extending a specified distance (a c'iaracteristic
leagth) on either side of the highest knife-edge. A characteristic
length of 2 km was used for the calculations discussed here.
Similarly, an equal segment around the second kn'fe-edge
is excluded, and a search is made for the third h.jhest knife-
edge. This process can continue until the entire profile
has been covered, or it can terminate after a specified number

of knife-edges has been found. 1In case tle line-of-sight

17
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is masked, the lines-of-sight between transmitter and highest

mask and receiver and highest mask are subjected to a similar

analysis, and we again exclude the profile segments a

> '\ characteristic length nn each side of a knife-edge. The
’ propagation loss i3 then computed for all the knife-edges
3 located in this way by using the extended Deygout approximation
i illustrated in Fig. 7.
; An examnle of the knife-edges selected by this program
; is shown in Fig. 8 for the Kendall Cemetery profile. The

knife-edge-searcn algorithm selected six knife-edges, three

- slightly different for the top and bottom of the helicopter

[ descent. Note that this alyorithm selected knife-edges at ranges
| of 9.5 and 13.5 km. These points are 2 km, a characteristic
length, on each side of the hill at 11.5 km range, and neither

point corresponds to a peak in the profile. These points

are artifacts of the algorithm, and they suggest the consequences 1
of searching for an unlimited nunber of knife-edges on a 1
profile by this method. Houwever, we can limit the number j

{ of knife-edges to be used, and compare the model predictions

for various numbers of diffracting edges.

1 5. Comparison of Measurements and Model Predictions

To calibrate the received signals with respect to free-

space propagation it was necessary to determine the value i
;
of a constant representing the product of the gains of the 1

—

2 18
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Fig. 8. Knife-Edges Selected by the Computer Program for
the Kendall Cemetery Path.
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antennas and the radiated power of the transmitter. Choosing
che Natty Pond data, we evaluated this constant to obtain

a bes. fit to the model predictions (minimum RMS difference
between data and predicted curve). This same correction
factor was applied to all other paths. Figures 9 through

14 show the received power measured relative to free-space
propagation plotted as points, with the model predictions
plotted as lines; the solid lines represent model predictions
that include all knife-edges found on the profile and the
dashed lines represent the model predicticns for a single
knife-edge., Circles and dots distinguish the two sets of
measurements made over each path. The lowest lines-~of-sight

over the masks are indicated with the notation LOS, The

heights are plotted with respect to sea level, and the prediction

curves terminate at ground level. Generally,the two measurements

over each path appear to be in excellent agreement. The
model predictions for a full set of knife-edges shown by
the solié lines match the measurecwents well. Predictions
made using the single most prominent knife-edges (dashed
lines) are also in good agreement except near the ground
for some of the paths, notably East Ware River and Kendall
Cemetery. For these two paths the terrain profiles in Fig.

3 show prominent secondary knife--edges that mask the receiver

20
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curve represents the prediction of the multiple-diffraction
model with no limit on the number of knife-edges. The dotted
curve represents the predictions for a single knife-edge.
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Fig. 10. Vertical Probe for the West Ware River Path. Data

from two sets of measurements are plotted as points; the

solid curve represents the prediction of the multiple-diffraction
model with no limit on the number of knife-edges. The dotted
curve represents the predictions for a single knife-edge.
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Fig. 12. Vertical Probe for the Forest Hill Path. Data from
two sets of measurements are plotted as points; the solid
curve represents the prediction of the multiple-diffraction
model with no limit on the number of knife-edges. The dotted
curve represents the predictions for a single kiife-edge.
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Fig. 13. Vertical Probe for the Canesto Brook Path. Data

from two sets of measurements are plotted as points; the

solid curve represents the prediction of the multiple-diffraction
model with no limit on the number of knife-edges. The dotted
curve represents the predictions for & single knife-edge.
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Fig. 14. Vertical Probe for the Kendall Cemetery Path. Data

from two sets of measurements are plotted as points; the

solid curve represents the prediction of the multiple-diffraction
model with no limit on the number of knife-edges. The dotted
curve represents the predictions for a single knife-edge.
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at low altitudes, and these second knife-edges need to be
taken into account. The fine-scale ripples that appear on
the solid lines but not on the dashed lines are produced
by the additional knife-edges found when the number is not
limited.

Table 5.1 summarizes the degree of agreement between
the data and the model for various numbers of knife-edges.
We have included in this table predictions for siingle, double,
and multiple knife-edges. Note that the predictions for multiple
knife-edges are not significantly different from the predictions
for double knife-edges. As expected, the single-knife-edge
predictions for the East Ware River and Kendall Cemetery
paths yield larger RMS differences than predictions that
include two <r more knife-edges.

No evidence of reflection lobes shows up in the measurements
made over tue Natty Pond and East Ware River profiles where
they would be most likely to occur, so the reflection coefficient
for this forested terrain must be small at this frequency
for the grazing angles encou~tered. Although large segments
of the profiles extended into the first Fresnel zone, our
propagation model with two knife-edges nevertheless agrees
with the measurements with an RMS error of about 2 dB or
less, and the predictions for these profiles are not significantly

improved by taking into account more than two knife-edges.
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We have also used the multiple-knife-edge model to predict
propagation over these paths with profiles derived from digital
terrain-relief maps obtained from DMA. 1In Appendix A the
profiles and the propagation predictions based on DMA data
are compared with those derived from Quadrangle Maps. In
Appendix B we compare predictions of the Longley-Rice propagation

model (Longley & Rice, 1968) with the prediction of our model.
6. nclusions

VHF radio propagation measured over the paths described here
was accurately predicted by a multiple-diffraction model that used
a simple generalizaticn of the Deygout approximation. We found
it sufficient to represent a terrain profile with two Kknife-
edges even when large segments of the terrain profile were within
the first Fresnel zone. The single-knife-edge model predicted the
propagation accurately except at low altitudes on some of the paths
where a second mask was clearly evident. We found that negligible
reflections were produced by this forest~covered terrain.

This multiple-diffraction model should be generally
useful for predictions of YHF propagation when multipath
reflections from the terrain are negligible. Two knife-edges
appear adequate to represent the diffraction effects produced
by most terrain profiles. However, the Deygout approximation
cannc~ be used for closely spaced knife-edges, and we cannot

easily define the spacing at which the Deygout approximation
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breaks down. Thus a more accurate solution to the multiple~
diffraction problem would make it possible to improve the

accuracy of propagation predictions in some cases.
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APPENDIX A

|

o PROFILES AND PROPAGATION PREDICTIONS FROM DMA
| DIGITAL-MAP DATA
(

To investigate the usefulness of digital-map data generated K

by the Defense Mapping Agency (DMA) for the prediction of

propagation loss, we used the so-called Level 1 Digital Terrain

Elevation Data to determine the terrain profiles for the

measured paths. The DMA digital-relief maps give terrain i
elevations in integral numbers of meters over a 3-arcsec

grid (spacing 93 m in the north/scuth direction). These

R

maps were derived by DMA from contcu: maps, scale 1:250,000
and contour spacing 50 ft. The DMA accuracy specifications*
state that the elevation errors are within %30 m 90 percent

of the time. 'The quadrangle maps, on the other hand, have

e

a scale of 1:24,000, about ten times larger than the maps
from which the DMA terrain elevations were derived.

[ To produce each terrain profile from the DMA data, a
great circle was generated at the appropriate azimuth from
the location of the Gardner VOR station (latitude 42° 32°

45" N, longitude 72° 03' 32" W). Profile points were located
along this great circle at a spacing of 100 m. For each

point, the latitude and longitucde was determined; then the

By corresponding grid square in the DMA file was located, i
4
3

*Product Specifications for Digital Landmass System (DLMS)
! Data Base, Defense Mapping Agency,; Aerospace Center, St.
: Louis AFS5, MO, Stock No. SPEC X DLMS (July 1977).
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| and the elevation was determined by a two dimensional interpolation

(in latitude and longitude) from the four DMA points defining

the grid square. The resulting profile was then sampled with

10-m spacing, the terrain bheight being determined by linear

P interpolation between the neighboring points determined with

100-m spacing.

) f Figures A-1 through A-5 show superimposed plots of profiles
é derived from each data base and the differences between profile

heights ‘quadrangle data minus DMA data) plotted with the same

height scale. Tree heights are not included in the quadrangle

profiles. The profiles from DMA data appear smoother, and

in almost every case the ridges and hilltors in the quadrangle

data are higher than in the DMA data. Dolbier Hill, on which

E i the VOR station is located, does not appear at all in the

‘ DMA data. Small height variations in the quadrangle data

appear flat in the DMA data. The accuracy limits 130 m

e il i o AR R oGO . ki ckith B __ oW o skl

are marked on the plots of profile-elevation difference;

b

one can see that these differences meet the specifications
given. by DMA for all paths except Forest Hill. The errors
exceed +30 m for the Forest Hill profile over 14 percent

of its length in Fig. A-3. However, over the total length

of all five profiles these bounds are exceeded only 2 percent

of the time.
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From the computed differences d; betwean =2levations on the
two profile representations, we have calculared for each of the
paths a number of statistical quantities: thu mean diffcrence 4,
the standard deviation Cgr the RMS differencs

2 2

d = d%+ odz), and the correlation iength Lc' where

rMs (Ypus
L. is the distance at which the autocorrelation function

c
drops to l1/e. Table A-1 lists these stx*istical guantities
for each path, If we assume that differernces have a normal
distribution, then we can conclude that 90 percent of the
time the differences will lie in the interval
d -1.65 o4 and d + 1.65 04+ BY this criterion all the paths
except Forest Hill easily meet the DMA specification.

The correlation lengths range between 300 and 1140 m
in Table A~l, We would expe~t the correlation length to be
related to the smallest detail of terrain relief that can
appear on a map of scale 1:250,000. For example, a very
small hill might be represented with a circular contour 3
mm in diameter; this would represent a circle of diameter
750 m on the ground, a distance comparable with the range
of correlation lengths. The 15-m (50-ft) contour spacing
on the maps used to generate the DMA data should be comparable
with the values of dRMS' which range between 8.9 and 17.1 m.

If the DMA data are to be regarded as a smoothed fit to the

38
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quadrangle data, then the mean differences d in Table A-1l
should be small compared to the corresponding Og° This appears
true for all the paths except Forest Hill and possibly Natty
Pond.

Both the quadrangle maps and the DMA digital maps represent
ground relief without trees. The treetop elevations were
estimated by comparing the theodolite measurements of mask
angle with the profiles measured from the quadrangle maps,
as described in Sec. 2. We calculated in this way a mean tree
height along the masking ridges of 15.2 m with a standard
deviation of 2 m. This small standard deviation and the
plausible tree height gives us confidence in the quadrangle
maps. To investigate the effects of terrain masking, we
added the tree height to the quadrangle profiles. If we
add 15.2 m to the tree-coverud portions of the quadrangle
profiles®* and calculate the differences between DMA and tree-
ceovered quadrangle profiles, we find from Figs. A-1 through
A-5 that the accuracy specifications are met in this case
as well; the percentage of profile points with difference
outside +30 m is 7 percent.

We have used the DMA profiles in Figs. A-1 through

A-5 to calculate propagation loss with the multiple-knife-

*Dolbier Hill has been cleared of trees.
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edge model described in Sec. 4. No limit was set on the

number of knife-edges to be used. 1In Figs. A-6 through

A-1l1 we show the predictions of signal strength (relative

to free-space propagation) vs. height plotted as a line;

superimposed are the measured data plotted as points, exactly

as in Figs. 9 through 14. Table A-2 shows a comparison of

S the RMS differences in decibels between model predictions
and the data for DMA profiles and quadrangle profiles. These

figures show that except for the Canesto Brook measurements,

the DMA profiles produce good agreement between measurements
and predictions. In fact for East Ware River, Forest Hill,
and Kendall Cemetery the RMS differences in Table A-1l are
smaller for the DMA profiles than for the quadrangle profiles.
On those paths for which the quadrangle profiles yield better

agreement with measurements, the larger RMS errors from the

DMA profiles result because the principal knife-edges are

located too low.
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APPENDIX B

COMPARISON OF THE LONGLEY-RICE MODEL
AND THE MULTIPLE-DIFFRACTION MOLEL
The Longley-Rice propagation model is a widely used

computer model for estimating the one-way loss between two
ground-based terminals. Because Longley-Rice is a standard
model applicable for frequencies from 20 MHz to 20 GHz and
for antenna (or target) heights between 0.5 and 3000 m, it
is important to compare the predictions of this model with
those of our multiple-diffraction model.

The Longley-Rice model computes propagation loss from
the following parameters: (l) frequency, (2) polarization,
(3) ground conductivity and dielectric constant, (4) atmospheric
refractivity at ground level, (5) transmitter and receiver

(or target) ground clearances, and (6; the terrain profile

between the transmitter and receiver. From the terrain profile the

model computes a best-fit straight line to the terrain elevations

above sea level and determines the heights of the transmitter
and receiver abuve this line. The heights determined in

this way are termed the effective heights. A terrain-roughness
parameter is also calculated; it is the so-called interdecile
range, the difference between the 90-percentile value and

the l0-percentile values of the terrain excursions about

this best-fit line. 1In addition, the model locates the horizon
viewed from the transmitter and from the receiver and calculates

elevation angles and ranges to these horizons.

49

[P

- -

PRI D IR "

'y



| Four different types of propagation calculations are

contained in the Longley-Rice model; they are the following:

! (1) Two-ray interference calculation,
| (2) Double-knife-edge Jdiffraction calculation,
(3) Spherical-earth diffraction calculation, and

(4) Tropospheric-scatter calculation.

The tropospheric-scatter calculation influences results
only at ranges longer than those considered here. These
calculations are approximations to well-known analytical
results. For a specific set of input parameters the Longley-
Rice model does the following: (1) calculates the loss values
at six different ranges using various combinations of the
above models, (2) determines a loss at each of these ranges from
a weighted average or from an extrapolation of the model
calculations, and (3) determines the loss for the specific set
of input parameters by interpolation from this set of average

losses at the six different path distances.

The Longley~Rice model computation must be regarded

as a semi-empirical estimation of the propagation loss, and
the accuracy of this model must be judged by comparing its
predictions with propagation measurements. Figures B-~1 through

B-6 show the predictions of the Longley-Rice model superimposed

on the measurements. For Porest Hill (Fig. B-4) and Kendall

Cemetery (Fig. B-6) the model predictions are in excellent
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agreement with the mersurements, but for the other paths the
agreement is poor. Table B-1l compares the RMS differences
between model predictions and measurements for the Longley-
Rice model and for the multiple-diffraction model. Note that
RMS differences are slightly smaller for the Longley~Rice model
than for the multiple-diffraction model on the Forest Hill
and Kendall Cemetery paths, but on the other four paths the
Longley-Rice model is significantly less accurate.

The complexity of the Longley-Rice model makes it difficult
to determine why the performance should be so uneven. If
we examine the profiles in Fig. 3, we can find no reason
why the Longley-Rice predicticns should be much more accurate
for the Forest Hill and Kendall Cemetery paths than for the
other paths. There are double knife-edges on the Forest
Hill and Kendall Cemetery profiles, suggesting that the Longley-
Rice model may be more accurate for double rather than single
knife-edges. But the East Ware River path also crosses two
prominent knife-edges, and the Longley-Rice predictions for
this path are inaccurate, as Fig. B-3 shows. So this conjecture
must be ruled out. We can conclude, however, that the over-
all performance of the multiple-diffraction model as indicated
by Table B-1 is clearly superior to that of the longley-Rice

model.
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